Date	Protagonists	Basis of Generalization or Theory	Weaknesses or/& Advantages
1774	Antoine Lavoisier (1743 – 1794)	Acids are substances containing oxygen	Davy found that 'oxymuriatic acid' was in fact hydrochloric acid, HCℓ, containing no oxygen
1810	Sir Humphry Davy (1778 – 1829)	Acids contain hydrogen as the important element	Many H-containing substances are not acids
1838	Justus von Liebig (1803 – 1873)	Substances which can react with metals to produce hydrogen gas	Oxidizing acids like nitric acid (HNO_3) do not generally give $H_{2(g)}$ with metals
1884	Svante Arrhenius (1859 – 1927) First comprehensive theory of acids and bases that attempted to explain acidity at the atomic level	Acid solutions in water are <i>electrolytes</i> and their solutions contain hydrogen ions, H ⁺ , while bases produce hydroxide ions, OH Strong acids are completely ionized in H ₂ O: $HC\ell_{(aq)} \rightarrow H^{1+}_{(aq)} + C\ell^{1-}_{(aq)}$. Weak acids are only partially ionized: $HOAc_{(aq)} = H^{1+}_{(aq)} + AcO^{1-}_{(aq)}$ [$Ac = CH_3CO = acetyl$]	Ideas could only be applied to aqueous solutions - but acid-base reactions were known that took place in non-aqueous solvents or without any solvent, <i>e.g.</i> , $NH_{3(g)} + HC\ell_{(g)} \rightarrow NH_4C\ell_{(s)}$ $MgO_{(s)} + SO_{3(g)} \rightarrow MgSO_{4(s)}$
1923	Johannes Brønsted (1879 – 1947) & Thomas Lowry (1874 – 1936) Independently proposed this more general definition	An acid is a proton (H ⁺ ion) donor A base is a proton (H ⁺ ion) acceptor $\begin{array}{r} HC\ell_{(aq)} + H_2O_{(\ell)} &= H_3O^{1+}_{(aq)} + C\ell^{1-}_{(aq)} \\ acid 1 & base 2 & conjugate \\ acid 2 & base 1 \end{array}$ $\begin{array}{r} H_2SO_{4(\ell)} + HNO_{3(\ell)} &= H_2NO_3^{1+}_{(\ell)} + HSO_4^{1-}_{(\ell)} \\ acid 1 & base 2 & conjugate \\ acid 2 & base 1 \end{array}$	Became known as Brønsted-Lowry theory of acids & bases and represented a great step forward in this field. Definition applies to all <i>protic</i> solvents, not only H ₂ O. Acids & bases not considered in isolation and readily interprets the different properties of pure acids <i>and</i> acids in solution. Acids are not confined to neutral species or positive ions. $HSO_4^{1-}(aq) + H_2O_{(l)} = H_3O^{1+}(aq) + SO_4^{2-}(aq)$
(1923) 1938	G N Lewis (1875 – 1946) Theory of wider applicability than that of Brønsted-Lowry	An acid is an electron-pair acceptor A base is an electron-pair donor $F_3B + :NH_3 = F_3B \leftarrow :NH_3$ Lewis Lewis acid base	The proton (H ⁺ ion) is an acid under this definition and so are a great number of other species. Theory greatly increases the number of reactions considered as acid- base, crucially those <i>not</i> occurring in protic solvents. Limitation of theory - it can be too general, $e.g.$, Pb(II) \rightarrow Pb(IV) is acid-base <u>and</u> redox using the Lewis system.